Bergeson & Campbell, P.C. (B&C®) is a Washington, D.C., law firm providing biobased and renewable chemical product stakeholders unparalleled experience, judgment, and excellence in bringing innovative products to market.

By Lynn L. Bergeson and Carla N. Hutton

Come learn about the 2023 Green Chemistry Challenge Awards program and the nomination process. This year the program will recognize winners in six categories, including: Greener Synthetic Pathways; Greener Reaction Conditions; The Design of Greener Chemicals; Specific Environmental Benefit: Climate Change; Small Business; and Academic.

Registration is open.


 

By Lynn L. Bergeson and Carla N. Hutton
 
On September 1, 2022, the U.S. Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service (APHIS) announced the availability of two new resources to answer stakeholder questions regarding the revised biotechnology regulations under 7 C.F.R. Part 340:

These resources, along with other information on the revised biotechnology regulations, are available on the APHIS website. For additional questions regarding the regulation of modified microorganisms, contact APHIS at .(JavaScript must be enabled to view this email address). For questions regarding confirmation requests, contact APHIS at .(JavaScript must be enabled to view this email address).


 

By Lynn L. Bergeson and Carla N. Hutton
 
On August 25, 2022, the U.S. Environmental Protection Agency (EPA) announced that registration was open for the 2022 Conference on the State of the Science on Development and Use of New Approach Methods (NAM) for Chemical Safety Testing. EPA notes that there will be limited availability in person at EPA headquarters in Washington, DC, on October 12-13, 2022, and a virtual option will also be available. Conference topics include:

  • Variability and Relevance of Traditional Toxicity Tests;
  • Evolution of Validation and Scientific Confidence Frameworks to Incorporate 21st Century Science; and
  • Breakout groups discussing Variability of Traditional Toxicity Tests, Relevance of Traditional Toxicity Tests, and Feedback on EPA Scientific Confidence Framework.

EPA asks that attendees register for the NAMs conference before October 7, 2022.
 
On October 18, 2022, EPA will provide training on the Computational Toxicology (CompTox) Chemicals Dashboard, which is part of a suite of databases and web applications developed by EPA to support the development of innovative methods to evaluate chemicals for potential health risks. The computational toxicology tools and data in the Dashboard help prioritize chemicals based on potential health risks. Specifically targeted for decision-makers, the training will provide:

  • An overview of the Dashboard content and function;
  • Application-oriented use-case demonstrations in the areas of general use, hazard/bioactivity, exposure/absorption, distribution, metabolism, and excretion (ADME)-in vitro to in vivo extrapolation (IVIVE), and chemistry; and
  • Opportunities for participatory learning and engagement.

The training will offer information about the latest release of the Dashboard and how it can be used to gather actionable information about chemical properties and risks through case examples, demonstrations, and hands-on exercises. Registration is now open (attendees must register for the training portions individually):


 

 By Lynn L. Bergeson and Carla N. Hutton
 
The U.S. Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) announced on August 11, 2022, that a research team from Pacific Northwest National Laboratory investigated how potassium in biomass feedstocks poisons a catalyst. The researchers focused their study on potassium, a common alkali metal found in biomass feedstocks, since previous analysis of deactivated catalysts after catalytic fast pyrolysis (CFP) of woody biomass feedstock revealed potassium accumulation on the catalysts’ surface.
 
The research team simulated catalyst poisoning at different potassium levels to trigger deactivation during industrial operations. They then analyzed the catalysts and conducted kinetic measurements to determine how the catalysts’ ability to catalyze chemical reaction changed with the introduction of potassium. According to BETO, the team found potassium poisoning could be substantially mitigated with a developed regeneration method -- a water washing process -- that can successfully remove most of the loaded potassium, restoring more than 90 percent of the catalytic activities.
 
BETO states that the results of these studies provide new insights for the bioenergy industry that will foster improved catalyst design and regeneration for longer lasting catalysts. The studies also created “a solid knowledge base for developers of biomass conversion technologies to continue to build upon, making new and innovative conversion technologies less risky to research and develop.” According to BETO, the work “also supports accelerated process development that can help industry convert biomass feedstocks commercially, leading to more effective and inexpensive production of biofuels.”


 

By Lynn L. Bergeson and Ligia Duarte Botelho, M.A.

On March 22, 2022, DOE announced a $34.5 million funding opportunity to improve the science and infrastructure for converting waste streams into bioproducts and biofuels that can benefit the local energy economy. DOE Principal Deputy Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Kelly Speakes-Backman, stated that “through this investment, we see an opportunity to support the bioeconomy and the equitable transition to a clean energy economy.” The FY22 Waste Feedstock and Conversion R&D Funding Opportunity Announcement (FOA) encourages the development of improved organisms and inorganic catalysts to support the next generation of low-carbon biofuels and bioproducts. This FOA has four topic areas:

  • Community Scale Resource and Energy Recovery from Organic Wastes;
  • Municipal Solid Waste Feedstock Technologies;
  • Robust Catalytic Processes; and
  • Robust Microbial Cells.

DOE will accept concept papers for this FOA until 5:00 p.m. (EDT) on April 18, 2022. Applications are due by 5:00 p.m. (EDT) on June 7, 2022. Additional information on this FOA is available here.


 

By Lynn L. Bergeson

On March 16, 2022, the House Science, Space, and Technology Subcommittee on Energy held a hearing on “Bioenergy Research and Development for the Fuels and Chemicals of Tomorrow.” According to the hearing charter, the purpose of the hearing was to examine the status of bioenergy research, development, and demonstration (RD&D) activities carried out by the U.S. Department of Energy (DOE). The hearing also considered advancements in bioenergy research and the potential role of this resource in a cleaner energy transition. Lastly, the hearing was intended to help inform future legislation to support and guide the United States’ bioenergy RD&D enterprise. Read more in Bergeson & Campbell, P.C.’s (B&C®) March 18, 2022, memorandum, “House Committee Holds Hearing on Bioenergy RD&D for the Fuels and Chemicals of Tomorrow."


 

By Lynn L. Bergeson and Carla N. Hutton

The U.S. Environmental Protection Agency will hold a virtual public meeting April 20-21, 2022, to seek individual input on the proposed Toxic Substances Control Act (TSCA) New Chemicals Collaborative Research Program. 87 Fed. Reg. 10784. In addition, EPA announced the availability of and is soliciting public comment on the draft document entitled “Modernizing the Process and Bringing Innovative Science to Evaluate New Chemicals Under TSCA.” EPA states that the Office of Chemical Safety and Pollution Prevention (OCSPP) is proposing to develop and implement a multi-year collaborative research program focused on approaches for performing risk assessments on new chemical substances under TSCA. According to EPA, the effort will be performed in partnership with its Office of Research and Development (ORD) and other federal entities to leverage their expertise and resources. Written comments are due April 26, 2022. Registration for the meeting is now open.

According to EPA, the research program will refine existing approaches and develop and implement new approach methodologies (NAM) to ensure the best available science is used in TSCA new chemical evaluations. Key areas proposed in the TSCA New Chemicals Collaborative Research Program include:

  • Updating OCSPP’s approach to using data from structurally similar chemicals to determine potential risks from new chemicals, also known as read-across. According to EPA, this will increase the efficiency of new chemical reviews, promoting the use of the best available data to protect human health and the environment.
  • Digitizing and consolidating information on chemicals to include data and studies that currently exist only in hard copy or in various disparate TSCA databases. EPA will combine the information with publicly available sources to expand the amount of information available, enhancing chemical reviews and enabling efficient sharing of chemical information across EPA. Safeguards for confidential business information (CBI) will be maintained as appropriate in this process.
  • Updating and augmenting the models used for predicting a chemical’s physical-chemical properties and environmental fate/transport, hazard, exposure, and toxicokinetics to provide a suite of models to be used for new chemicals assessments. The goal of this effort is to update the models to reflect the best available science, increase transparency, and establish a process for updating these models as science evolves.
  • Exploring ways to integrate and apply NAMs in new chemicals assessments, reducing the use of animal testing. EPA states that as this effort evolves, the goal is to develop a suite of accepted, fit-for-purpose NAMs that could be used by external stakeholders for data submissions under TSCA, as well as informing and expanding new chemical categories.
  • Developing a decision support tool that integrates the various information streams specifically used for new chemical risk assessments. The decision support tool will integrate more efficiently all the data streams (e.g., chemistry, fate, exposures, hazards) into a final risk assessment and transparently document the decisions and assumptions made. Simply put, this will facilitate the new chemicals program tracking decisions over time and evaluating consistency within and across chemistries.

EPA states that additional information on each of these areas will be provided in the draft collaborative research plan that will be available in the docket by March 14, 2022. Later in 2022, EPA plans to engage its Board of Scientific Counselors (BOSC), a federal advisory committee, for peer review. EPA also intends to issue a Federal Register notice announcing the BOSC meeting and to open a docket for public comments.

Although the notice states that EPA’s background documents and the related supporting materials to the draft are available in the docket established for this meeting, Docket ID Number EPA-HQ-OPPT-2022-0218, nothing is available at this time. EPA states that it will provide additional background documents as the materials become available. After the virtual public meeting, EPA will prepare meeting minutes summarizing the individual comments received at the meeting. EPA will post the meeting minutes on its website and in the relevant docket.


 

By Lynn L. Bergeson 

On February 1, 2022, DOE EERE BETO issued two new requests for information (RFI) on biomass conversion R&D and community organic waste programs. The RFI titled “Biomass Conversion Research, Development, and Analysis Programs” focuses on biomass conversion R&D and seeks to address improved robustness of microbial cells, catalytic processes, and state-of-technology analyses in the BETO research portfolio. Through this program, BETO is interested in receiving feedback on barriers, capabilities, tools, and other general information needed to prioritize future R&D programs in the areas of organism and catalyst development. BETO also seeks input on which analyses are most useful to the broader bioenergy research and industrial community. Responses to this RFI must be submitted by March 11, 2022, and are required to be provided as an attachment via e-mail to .(JavaScript must be enabled to view this email address).

DOE EERE BETO’s RFI titled “Community-scale Resource and Energy Recovery from Waste Solutions” requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to community programs for organic waste. DOE EERE wishes to understand better which wastes related to economic, environmental, and social impacts are of highest priority to communities and how DOE can make its Conversion R&D program more effective in addressing these types of challenges. BETO is particularly interested in input on five different waste streams: dairy manure, swine manure, food waste, municipal wastewater residuals, and fats/oils/greases. Responses to this RFI must also be submitted by March 11, 2022, and provided as an attachment via e-mail to .(JavaScript must be enabled to view this email address). In lieu of providing written responses to this RFI, BETO is also accepting requests for a 30-minute individual discussion via e-mail. Additional information on both RFIs is available here.


 

By Lynn L. Bergeson 

On January 10, 2022, the Massachusetts Institute of Technology (MIT) announced that a team of its researchers has developed a promising approach to control methane emissions and remove methane from the air using zeolite clay. Zeolite clay is inexpensive and abundant. The MIT team found that, when treated with copper, the material is very effective at absorbing methane from the air even at low concentrations. According to researcher and Associate Professor of Civil and Environmental Engineering, Desiree Plata, Ph.D., this process is advantageous over other approaches to removing methane from the air, as other methods tend to use more expensive catalysts that require high temperatures. The method converts methane into carbon dioxide that, according to Plata, is much less impactful in the atmosphere than methane. Methane is about 80 times stronger as a greenhouse gas (GHG) over the first 20 years, and approximately 25 times stronger for the first century.
 
MIT researchers still have outstanding engineering details to address in this process. To do so, the U.S. Department of Energy (DOE) awarded a $2 million grant for MIT to continue to develop specific equipment for methane removal in places with concentrated sources of methane, such as dairy barns and coal mines. Plata reported that the next phase of the project will focus largely on ways to structure the clay material in a multiscale, hierarchical configuration to demonstrate a proof of concept that this method can work in the field.
 


 

By Lynn L. Bergeson

On November 11, 2021, the University of Iowa announced that its Department of Biology scientists discovered a new type of genetic variation in yeast that can improve the production of ethanol. According to the study conducted by the University’s biologists, yeast strains with certain alleles of gene MED15 are more efficient at fermentation. The study was led by Professor Jan Fassler, who states that these findings may assist scientists in engineering a better yeast strain to produce more efficiently bioethanol for fuel and wine.


 
 1 2 3 >  Last ›